12.8 文献笔记
12.8 文献笔记¶
支持向量机背后的理论归功于 Vapnik 并且在 Vapnik (1996)1 中进行了描述。有关 SVM 的新兴文献、由 Alex Smola 和 Bernhard Scholkopf 创造并维护的在线文献,可以在下面的网站中找到
http://www.kernel-machines.org/
我们的处理是基于 Wahba et al. (2000)2 和 Evgeniou et al. (2000)3,以及Burges (Burges, 1998)4 的教程。
线性判别分析归功于 Fisher (1936)5 和 Rao (1973)6。其与最优得分的联系至少可以追溯到 Breiman and Ihaka (1984)7,以及 Fisher (1936)8 中的一种简单形式。其与对应分析 (Greenacre, 1984)9有很强的关联。灵活的、带惩罚的以及混合判别分析的描述是取自 Hastie et al. (1994)10, Hastie et al. (1995)11 以及 Hastie and Tibshirani (1996b)12, Hastie et al. (1998)13 对这三者进行了总结;也可以参见 Ripley (1996)14。
- 1
Vapnik, V. (1996). The Nature of Statistical Learning Theory, Springer, New York.
- 2
Wahba, G., Lin, Y. and Zhang, H. (2000). GACV for support vector machines, in A. Smola, P. Bartlett, B. Sch¨olkopf and D. Schuurmans (eds), Advances in Large Margin Classifiers, MIT Press, Cambridge, MA., pp. 297–311.
- 3
Evgeniou, T., Pontil, M. and Poggio, T. (2000). Regularization networks and support vector machines, Advances in Computational Mathematics 13(1): 1–50.
- 4
Burges, C. (1998). A tutorial on support vector machines for pattern recognition, Knowledge Discovery and Data Mining 2(2): 121–167.
- 5
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems, Eugen. 7: 179–188.
- 6
Rao, C. R. (1973). Linear Statistical Inference and Its Applications, Wiley, New York.
- 7
Breiman, L. and Ihaka, R. (1984). Nonlinear discriminant analysis via scaling and ACE, Technical report, University of California, Berkeley.
- 8
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems, Eugen. 7: 179–188.
- 9
Greenacre, M. (1984). Theory and Applications of Correspondence Analysis, Academic Press, New York.
- 10
Hastie, T., Tibshirani, R. and Buja, A. (1994). Flexible discriminant analysis by optimal scoring, Journal of the American Statistical Association 89: 1255–1270.
- 11
Hastie, T., Buja, A. and Tibshirani, R. (1995). Penalized discriminant analysis, Annals of Statistics 23: 73–102.
- 12
Hastie, T. and Tibshirani, R. (1996b). Discriminant analysis by Gaussian mixtures, Journal of the Royal Statistical Society Series B. 58: 155–176.
- 13
Hastie, T. and Tibshirani, R. (1998). Classification by pairwise coupling, Annals of Statistics 26(2): 451–471.
- 14
Ripley, B. D. (1996). Pattern Recognition and Neural Networks, Cambridge University Press.