9.8 文献笔记

9.8 文献笔记

广义可加模型的最系统的资料是Hastie and Tibshirani(1990)1。这个工作在医学问题上的不同应用在Hastie et al. (1989)2和Hastie and Herman (1990)3中有讨论,而且在Chambers and Hastie (1991)3中描述了Splus软件的实现。Green and Silverman (1994)4讨论了在不同设定下惩罚和样条模型。Efron and Tibshirani(1991)5对非数学读者,介绍了统计的现代发展(包括广义加性模型)。分类和回归树至少追溯到Morgan and Sonquist(1963)6。我们已经采用Breiman et al. (1984)7和Quinlan (1993)8等人的现代方法。PRIM方法归功于Friedman and Fisher(1989)9。专家的系统混合由Jordan and Jacobs (1994)10提出;也参见Jacobs et al. (1991)11


1

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models, Chapman and Hall, London.

2

Hastie, T., Botha, J. and Schnitzler, C. (1989). Regression with an ordered categorical response, Statistics in Medicine 43: 884–889.

3(1,2)

Hastie, T. and Herman, A. (1990). An analysis of gestational age, neonatal size and neonatal death using nonparametric logistic regression, Journal of Clinical Epidemiology 43: 1179–90.

4

Green, P. and Silverman, B. (1994). Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach, Chapman and Hall, London.

5

Efron, B. and Tibshirani, R. (1991). Statistical analysis in the computer age, Science 253: 390–395.

6

Morgan, J. N. and Sonquist, J. A. (1963). Problems in the analysis of survey data, and a proposal, Journal of the American Statistical Association 58: 415–434.

7

Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and Regression Trees, Wadsworth, New York.

8

Quinlan, R. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo.

9

Friedman, J. and Fisher, N. (1999). Bump hunting in high dimensional data, Statistics and Computing 9: 123–143.

10

Jordan, M. and Jacobs, R. (1994). Hierachical mixtures of experts and the EM algorithm, Neural Computation 6: 181–214.

11

Jacobs, R., Jordan, M., Nowlan, S. and Hinton, G. (1991). Adaptive mixtures of local experts, Neural computation 3: 79–87.